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available.  They operated at a superficial face
velocity of 3 cm/sec, an initial pressure drop of
2.0 kPa, and an activity reduction of 99.7 percent.
Additional units were built at the Savannah River
Site (SRS) later, and each has given many years of
continuous service.  It should be noted that the
design airflow resistance of deep-bed sand (DBS)
filters is higher and the retention efficiency lower
than may be obtained using absolute filters, but
freedom from servicing and replacement over
many years are important advantages when the
collected material is intensely radioactive.  In
addition, DBS filters are nonflammable, largely
unaffected by condensed water and strong acids,
and provide a substantial heat sink in the event of
fire or explosion.  They are, however, also large,
expensive, and nondisposable.

Rapidly emerging glass fiber technology during the
1940s and 1950s shifted attention to the use of
very deep beds (250 cm or more) of curly glass
fibers, combined with HEPA-quality final filters,
as a satisfactory substitute for sand filters when
treating gaseous effluents from chemical
operations.73  These proved to be more efficient
and to have lower airflow resistance than the sand
filters they replaced.  Deep-bed glass fiber filters
have been used at Hanford for several decades on
their Purex process effluent stream, and a similar
installation is in place at the DOE Idaho chemical
plant.  In addition, an investigation was conducted
to determine the ability of a similar type of deep-
bed fiber filter to collect and store, at modest
pressure rise, very high loadings of sodium-
potassium fume that might accidentally be
released from a liquid metal fast breeder reactor.19

There has been interest in sand filters for
emergency containment venting for light-water
reactors.  An installed Swedish containment
venting system known as FILTRA features large
concrete silos filled with crushed rock.  These silos
were designed to condense and filter steam blown
from the containment and to retain at least 99.9
percent of the core inventory.23  Later designs for
containment venting utilized wet systems to
remove gaseous radioiodine.23

1.3  BRIEF HISTORY OF GAS

ADSORPTION

1.3.1  INTRODUCTION

Iodine in its many chemical forms is probably
among the most extensively studied fission
products produced in the nuclear industry.  The
generation, release mechanism, properties, forms,
trapping and retention behavior, and health effects
of iodine-131 have been the subject of numerous
studies, but a comprehensive understanding of the
significance of its release to the environment and
integration of the chemical technology into
protection technology may remain incomplete in
some aspects.  The technology associated with the
removal and retention of all iodine isotopes is
similar to that for iodine-131, but interest in
removal efficiency has shifted somewhat toward
the importance of long-term retention with the
increasing half-life of the iodine isotope.

A removal technology for the radioactive noble
gases (krypton, xenon, radon) using adsorbents
has also been studied extensively.  This removal
technology has become a standard control method
for boiling water reactor (BWR) offgas
decontamination and has replaced pressurized
tank retention for pressurized water reactor
(PWR) offgas control.  A similar technology can
be used to hold up the krypton-85 contained in
reprocessing offgases.

Volatile metal compounds such as ruthenium and
technetium can be removed from gas streams by
adsorption, but a solid-surface-supported chemical
reaction is often necessary for good retention.
Removal technologies for carbon-14 and tritium
also involve the use of adsorbents, either as
collecting agents or as catalysts for conversion to
other, more easily removed compounds.

Vapor recovery by adsorption was a well-
established chemical engineering unit operation
process prior to nuclear technology development
for weapons and power production.  Generally,
vapor recovery systems utilized beds of activated
carbon that were 60 cm deep or more and often
consisted of two or more identical units in parallel
so that one could be on-stream while a second
was being desorbed by low-pressure steam and a
possible third was undergoing cooling after steam
desorption.  These multi-bed arrangements made
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continuous operation of vapor production
processes possible.

Adsorbents of various types, both impregnated
and unimpregnated, became widely used during
and following WWI in military and civilian gas
mask canisters and cassettes for removing a wide
range of toxic substances from breathing air.
Activated carbon derived from nut shells was used
in the U.S. Army service gas mask during WWI.
Later, the activated carbon used in the service gas
mask was derived from coal and impregnated with
metals that catalyze reactions with gas warfare
agents.  Activated carbon also was used to treat
ventilation air in special applications such as
removing sulfur dioxide and ozone from air
supplied to libraries housing rare book collections
to prevent paper embrittlement.  Ventilation
applications used shallow beds of activated
carbon, generally 2.5 cm or less, because complete
removal of outdoor contaminants was seldom a
requirement and low airflow resistance was
essential to prevent unacceptable fan noise levels.
The theoretical basis for adsorption processes was
greatly advanced by the need to develop gas mask
applications during WWI, and an early theoretical
analysis of physical adsorption was made by
Langmuir.22  Thus, there was a considerable body
of knowledge available on the application of
adsorbents, especially for activated carbon, when
the nuclear industry developed a need for this
technology.

Control of iodine emissions from chemical
processing of spent nuclear fuel was initially done
by liquid scrubbing using caustic solutions, and
sometimes with the addition of sulfate salts, but
retention efficiency by scrubbing seldom exceeded
90 percent.  To improve iodine retention
efficiency for dissolver offgas cleaning, activated
carbon beds were added to the caustic scrubber at
the DOE’s Idaho Falls Plant in 1958 and were
reported to provide additional decontamination
factors of 10 to 30.  Silver-plated Fiberfrax fibers
also were investigated at the Idaho Test Station
for use as a combined particulate filter and iodine
retention device for hot calciner offgas cleaning.
Other studies of this nature were conducted with
silver-plated copper filaments, and an iodine
decontamination factor of 10 was reported.

Iodine releases to the atmosphere in the event of a
reactor accident became a major concern as the

nuclear industry began its rapid expansion during
the early 1960s, and attention focused on iodine
removal during normal and abnormal conditions
at ambient and elevated temperatures.  An iodine
decontamination factor of 10 was reported.  At
ORNL, studies were conducted on activated
carbon beds for the holdup of radioactive fission
gases generated during the operation of nuclear
reactors and during nuclear fuel reprocessing.  The
principal area of interest was delaying release until
short-half-life isotopes decayed to levels that were
acceptable for release.  This approach utilized
conventional theoretical plate equations.

1.3.2 POWER REACTORS

The first major U.S. effort related to control of
radioiodine from reactors consisted of design
studies of confinement systems for the nuclear-
powered commercial ship N.S. Savannah and the
Hanford N Reactor.32, 33, 34  At that time, control
of elemental iodine was of primary interest, mainly
because data from various prior accidents failed to
differentiate iodine forms.  An early and very
realistic analysis and solution of iodine retention
requirements was presented by Riley from the
United Kingdom.  He proposed a process-
engineering solution to iodine retention and
recommended 30-cm-deep carbon beds operated
at high velocity and with 0.5-sec residence time.
In the United States, however, the heating,
ventilating, and air-conditioning (HVAC) shallow-
bed model was adopted by the nuclear industry,
and shallow beds of carbon became the
predominant method for iodine capture.

The U.S. activated carbon adsorber design was
based on a series of relatively short-term
laboratory experiments using fresh carbon, clean
carrier gas, and nonsystematic iodine inlet
concentrations.35, 36, 37, 38  Results indicated an
iodine removal efficiency for 2.0- to 2.5-cm-deep
carbon beds that could not be obtained in
practice.  Typically, the early installations were
constructed in pleated form and contained 20 to
25 kg of carbon for every 5 m3/sec of airflow.39, 40,

41  This design became known as a Type I
Adsorber Unit.  It was later found that, under
high-humidity conditions (greater than 70 percent
relative humidity), shallow carbon beds were
incapable of high-efficiency removal of organic
iodides, particularly methyl iodide.42, 43, 44  The
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somewhat accidental discovery that isotope
exchange would take place on carbon surfaces and
that gas mask carbons impregnated with tertiary
amines to control low-molecular-weight chemical
warfare agents containing organic halides would
also react with radioactive organic halides led to
the use of carbons impregnated with stable iodine
or iodide salts to control methyl iodide by isotope
exchange, as well as the use of amine-impregnated
carbons to control methyl iodide by complex
formation.45, 47, 48, 49

Although laboratory experiments with
unimpregnated carbons indicated that a 2.5-cm
bed performed acceptably for elemental iodine
removal when the exposure was a short duration
and the carbon was fresh, a minimum acceptable
bed depth of 5 cm was needed under ideal
conditions for the impregnated carbons used for
methyl iodide removal.  This led to development
of a tray-type design for nuclear adsorber units
consisting of two 5-cm-deep military-type50

adsorber trays that were attached to a 61- x 61-cm
face plate for mounting in ladder frames.  This
adsorber design became known as a Type II
Adsorber Unit.  It provided a 0.25-sec gas
residence time in the carbon and operated at a gas
velocity of 20 cm/sec.

Standardization of the external dimensions of the
tray-type units did not occur for many years, and
there are currently approximately ten different
adsorber sizes in service in the United States.  This
creates logistical difficulties for warehousing
spares and obtaining fast replacements in case of
an accident.  For example, between the two
reactors on the TMI site at the time of the TMI-2
accident, there were four different adsorber
shapes and sizes—three of them supplied by the
same vendor.

In the beginning, criteria for the selection of
adsorbent media were not well standardized in the
United States.  Based on short-term tests, carbon
impregnated with potassium iodide and iodine
performed better than unimpregnated carbon and
its use dominated early iodine control technology.
A water extract from finished impregnated
carbons varied in pH from neutral to acidic
depending on the method of preparation.  As the
pH of the water extract of the base carbon also
influences the pH of the impregnated carbon, the
choice of vegetable-base (coconut shell) carbons

for impregnation was helpful because, in addition
to being hard, such carbons contain approximately
1 percent potassium hydroxide or sodium
hydroxide that reacts with free elemental iodine to
produce iodide forms that migrate through the
carbon less easily than elemental iodine.51, 52, 53

In the late 1960s and early 1970s, researchers
realized that design data derived from short-term
experiments with fresh carbons provided
inadequate adsorber designs for the long-term
protection needed from carbon beds.  Carbons
deteriorate from long exposure to air pollutants
(weathering), as well as from inadvertent
adsorption of widely used organic compound-
containing materials (poisoning).  Both situations
result in a loss of capacity for iodine species.  Such
observations led to development of deep-bed
adsorbers constructed with 10- to 50-cm-deep
beds of impregnated carbon that could be filled by
pouring the granules into large panels, thereby
eliminating the many leak paths associated with
tray-type units.54, 55, 56, 57  This adsorber design was
designated a Type III Adsorber.

The nuclear reactor post-accident iodine release
concepts that became established and codified
during the late 1960s were based on the
assumption that a large quantity of elemental
iodine would be released and have to be adsorbed.
The design criteria were based on the release of 50
percent of core iodine with half of the released
iodine captured by plate-out on surfaces.  Of the
remaining airborne iodine, 85 percent would be
elemental, 10 percent would be organic, and 5
percent would be particulate. Contemporary
transport concepts contemplated a need to treat
large air volumes at locations several steps away
from the point of release of the iodine fission
products.  It was anticipated that iodine capture
would be made more difficult by dilution in a large
volume of air, as well as by the presence of a large
quantity of other chemicals in the air that would
compete with iodine for adsorption sites or react
more rapidly with the impregnants.

1.3.3 RADIOCHEMICAL PROCESSING

The quantity of radioiodine used in radioactive
tracer studies is small compared to the
concentrations present in power reactors, but the
variety of radioiodine-containing organic
compounds is greater.  Based on available
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theoretical and experimental data, the removal
efficiency of impregnated nuclear carbons for
many organic compounds is lower than for methyl
iodide.  Furthermore, most radioiodine
decontamination systems found in connection
with laboratory fume hoods are inadequate even
for methyl iodide, as they usually only contain a
depth of 2.5 cm of some unimpregnated carbon
that has not been specifically qualified for this
intended use.  For laboratory hood service, carbon
depth should provide at least a 0.25- to 0.50-sec
residence time and should permit removal of
representative samples for periodic laboratory
testing to determine remaining service life.
Representative samples should be removed at least
every 720 hrs of continuous use and should be
tested under conditions corresponding to the
hood effluent conditions with respect to relative
humidity, temperature, and the presence of
compounds that compete with the radioiodine
species for adsorption sites.  For example, when
relative humidity is variable, the adsorbent should
be tested at the maximum relative humidity
conditions likely to be present to obtain
conservative values.

1.3.4 FUEL REPROCESSING PLANTS

The isotope of importance in the effluent gases
from fuel reprocessing systems is iodine-129,
which has a half-life of 1.7 x 107 years.
Generation of gaseous iodine-129 occurs in the
presence of oxidizing acid gases such as nitrogen
oxide under very-high-humidity conditions, and
often when there are high concentrations of
competing organic compounds.  This is a very
demanding environment for adsorption media.  At
the beginning, reprocessing effluent treatment in
the United States usually involved liquid scrubbing
with alkaline solutions.  However, there are
anecdotal reports of a packed bed scrubber at
Hanford that utilized silver dollars for the packing
to make the captured iodine more insoluble as
silver iodide.  Although alkali, mercuric nitrate,
and hyperazeotropic nitric acid absorption systems
are still used for this purpose, direct removal of
iodine using solid adsorbents has been gaining
favor in treating the gaseous effluent at newer fuel
reprocessing plants.  The use of solid adsorbents
for this service was first evaluated at the SRS with
activated carbon, but it proved to be unstable in
the dissolver offgas environment.  In 1968, a

switch was made to a silver-impregnated inorganic
adsorbent.  The solid adsorbents under
consideration include primary silver-containing
materials such as silver-exchange zeolites and
silver-impregnated adsorbents.  In this case, the
adsorbent acts as a carrier for the silver-iodine
chemical reaction.  Due to the relatively high cost
of silver, it is important that as much silver as
possible is utilized before exhaustion of the
adsorbent system.  Numerous studies have been
conducted to evaluate these materials for full
reprocessing service.58, 59, 60, 61

The most commonly used adsorbents for
dissolver offgas treatment include AC6 120,
a silver-nitrate-Impregnated, high-silica-base
adsorbent;62 a silver-and-lead-nitrate-impregnated,
high-temperature base adsorbent;63 and silver-
exchange zeolites64 and mordenites.65  Several
reaction mechanisms lead to various silver-iodine
compounds.  The most common compound for
both elemental and organic iodine is silver iodide,
which is very stable except in a high-temperature
hydrogen environment where reduction to
elemental forms occurs.

1.3.5 USE OF ADSORBENTS FOR NOBLE
GAS CONTROL

The application of adsorbents for noble gas
retention was developed at ORNL.  The concept
involves self-regeneration of the adsorbent due to
decay of the noble gases to solid daughter
products as they pass through very deep adsorbent
beds that require a long time for passage and
result in the successive extinction of noble gas
radioisotopes—those with the shortest half-lives
disappear first.  This technology is generally used
to decontaminate all noble gas isotopes (except
krypton-85 because of its long half-life—nearly 11
years).  The process is particularly well suited to
treat BWR off-gas streams and was applied first at
the KRB site in Germany.  The first BWR
installation in the United States was the Interim
Offgas System at the Vermont Yankee Plant.66  It
was succeeded by the Advanced Offgas System at
the same site.67  The earlier technology involved
ambient temperature systems.  Cooled or
refrigerated systems were later designed by
General Electric Company.65

Storage tanks were used for PWR degasifier gas
processing at first, but a continuous-flow
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adsorption system was installed at Seabrook
Nuclear Power Station, the first for a U.S. PWR.69

Design parameters for noble gas adsorption
systems were established on a more systematic
basis than was the case for control of radioiodine,
and the few problems that have occurred with
these plants were related to improper humidity
control or accidental wetting of the carbon prior
to operation.  Two temperature excursions have
been reported in these systems—one at ORNL,
where an oxygen stream was being
decontaminated,70 and one at Browns Ferry
nuclear power plant, where a hydrogen
recombiner malfunctioned.2

1.4  ADSORBENT BED SIZING FOR

NOBLE GAS DELAY

The sizing of adsorbers for delay of radioactive
gases has been evaluated by several investigators.1
Browning developed a theoretical chamber model
which, although not a precise description of the
dynamic adsorption process, has been empirically
found to follow the performance of delay beds.
The application of the theoretical plate concept
for krypton-xenon delay bed calculations was
made by Burnette.71  This process assumes
nonequilibrium conditions where molecular
diffusion through the stagnant gas film in contact
with the carbon surface is the rate-limiting step.
Bruck91 devised a very simple concept based on a
proportionality factor to describe the distribution
of the adsorbate between the adsorbent and the
interstitial space between the adsorbent grains.
Close examination indicates that the term
"dynamic adsorption coefficient" used in the
design of these systems is also the slope of the
Langmuir adsorption isotherm when equilibrium
conditions exist.  The adsorption coefficient can
be determined in both under static (K') and
dynamic (K) conditions.  The static coefficient
represents equilibrium conditions between the gas
phase and the adsorbed component of the
adsorbate, whereas the dynamic coefficient
represents the sum of the equilibrated and the
nonequilibrated (caused by mass transfer
limitations) portions of the bed.  The ratio of
K/K' ≈ 1.0 applies to very large systems that
contain the same adsorbent when temperature,
pressure, and adsorbate and co-adsorbate
concentrations are the same.

Testing of Iodine Adsorbents

The current test protocol is ASTM D3803-79,
which superseded RDT M-16.  Both standards
have numerous typographical and editorial
mistakes such as inaccurate decay constants for
iodine-131 and inconsistencies in time duration
between the text and tables.  Both procedures are
merely guides as far as equipment setup is
concerned, but the critical parameters listed in
Table No. 1 of ASTM D3803-89 and Section 13
specify reporting requirements.

Testing of Noble Gas Adsorbents

The results of noble gas delay are not correlatable
because important test parameters either were not
reported or were not standardized.  Omissions
include the unspecified moisture content of the
adsorbent, relative humidity of the gas, and
duration of pre-equilibration for the experiment.
In some cases, tests involved only a few grains of
carbon, and the results have been extrapolated to
full-size systems with bad results.

Operating Experience with Iodine Adsorption

Several important lessons concerning iodine
control were learned from the TMI-2 accident.
The first is that the conventional iodine release
and transport theories were incorrect.  Most of the
iodine stayed in the liquid phase or plated out in
the containment vessel.  The total amount of
iodine that reached the operating filter adsorber
trains can be conservatively estimated at 150 Ci, of
which approximately 15 to 32 Ci were released to
the environment.  This value, when compared
with approximately 13 x 106 Ci of xenon-133
released, is a good indication of the lack of
predicted partitioning of iodine species into the
airstream.  One indication of the iodine species
distribution showed a predominance of methyl
iodide, followed by elemental iodine.  The system
available for controlling iodine releases was
comprised of two trains in the Unit 2 Auxiliary
Building, identified as trains A and B, and two
trains in the Fuel Handling Building, identified as
trains A and B.  The Auxiliary Building trains were
not classified as engineered safeguard facilities.
They captured approximately 12 to 14.6 Ci of
iodine and released approximately 1.2 to 1.8 Ci.
The Fuel Handling Building filters were
downgraded safeguards that captured
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approximately 36 to 48 Ci of iodine and released
approximately 5 to 15 Ci.
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